Understanding Relative Humidity in Concrete
Here is an article from our distribution partner Giatec on relative humidity for use with the BlueRock sensors.
Relative humidity (RH) is often mistaken for moisture; however, these are two completely separate terms. Moisture content represents the amount of water in liquid form, while humidity levels represent the amount of water in vapour form.
Relative humidity is defined as “the ratio of the amount of water vapour actually in the air compared to the amount of water vapour required for saturation at that particular temperature and pressure expressed as a percentage.”
Simply put, relative humidity represents the amount of water vapour that is present in the air in comparison to the amount that the air can hold.
The Difference Between Moisture and Relative Humidity
To better understand the concept of relative humidity, imagine a glass of water that is sealed.
- If the glass is full of water, the moisture level and the relative humidity level will both be 100%
- If half of the water is removed, the amount of moisture is now at 50% but RH is still at 100% because the air is fully saturated with water.
- Now, remove almost all of the water from the glass. With lower moisture content, the RH value will decrease as the air is no longer saturated.
Sources of Moisture in Concrete
Multiple factors can influence the level of relative humidity in a concrete slab, thus contributing to high relative humidity 6 months or more after pouring concrete:
- The initial amount of water in the concrete (from a high water/cement ratio);
- Ambient conditions such as high ambient relative humidity, cold temperatures, additional sources of water, and limited air movement;
- Wet curing;
- The use of pozzolans, such as silica fume, which have a tendency to retain water and take longer to dry; and
- Missing or inadequate moisture barrier in a slab on grade, causing outside moisture to penetrate the slab.
-
Prevent Flooring Failures With Concrete Humidity Meters
Before a flooring system is installed, it is crucial to measure the relative humidity of the concrete. Only when the relative humidity has reached a certain level is it safe to install a floor while avoiding failure.
Once the floor is installed, it seals the surface and prevents further drying of the concrete underneath. If the floor is installed too early, excess relative humidity will be trapped inside the concrete. It will try to evaporate, leading to pressure and changes in the alkalinity at the flooring and concrete interface.
Typical concrete failures due to relative humidity include:
- Delamination of the floor adhesive;
- Blistering of the epoxy coating;
- Re-emulsification of the adhesive (stain); and
- Curling, cracking, or bubbling of flooring materials
- Inappropriate flooring prior to installation can lead to these types of recurring and costly failures.
Looking for an easy, efficient way to monitor relative humidity in your project? Our BlueRock sensors wirelessly monitor the relative humidity in your slab and send the data via bluetooth direct to your phone.
Source: